The isomorphism problem for incidence rings
نویسندگان
چکیده
منابع مشابه
Corrections and Addenda to “the Isomorphism Problem for Incidence Rings”
In this note the authors correct and extend results presented in their article “The Isomorphism problem for incidence rings”, Pacific J. Math., 187(2) (1999), 201-214. Specifically, it is shown that for a large class of rings (including those with finite right Goldie dimension, semilocal, and many commutative rings), if P and P ′ are finite preordered sets for which there is an isomorphism of i...
متن کاملThe isomorphism problem for commutative monoid rings’
By substantial changes and corrections in Demushkin’s old paper the essentially final positive answer to the isomorphism problem for monoid rings of submonoids of Z’ is obtained. This means that the underlying monoid is shown to be determined (up to isomorphism) by the corresponding monoid ring. Thereafter the positive answer to the analogous question for the ‘dual’ objects descrete Hodge algeb...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولThe isomorphism problem for monoid rings of rank 2 monoids *
The main result of this paper is that for a commutative ring R and finitely generated submonoids M and N of Z2 the monoid rings R [M] and R[N] are isomorphic as R algebras if and only if M and N are isomorphic. In the course of proof we derive various results concerning the structure of rank 2 monoids and isomorphisms between the corresponding monoid rings. 1991 Math. Subj. Class.: 13B25, 20M25...
متن کاملSubgroup Isomorphism Problem for Units of Integral Group Rings
The Subgroup Isomorphism Problem for Integral Group Rings asks for which finite groups U it is true that if U is isomorphic to a subgroup of V(ZG), the group of normalized units of the integral group ring of the finite group G, it must be isomorphic to a subgroup of G. The smallest groups known not to satisfy this property are the counterexamples to the Isomorphism Problem constructed by M. Her...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Illinois Journal of Mathematics
سال: 1985
ISSN: 0019-2082
DOI: 10.1215/ijm/1256045846